Hey there, fellow developer! Ready to supercharge your Java app with some AI goodness? Let's dive into integrating the Seamless AI API. This powerful tool will help you fetch rich data about people and companies, giving your application a serious edge.
Before we jump in, make sure you've got:
First things first, let's get our project ready:
pom.xml
(if you're using Maven):<dependencies> <dependency> <groupId>com.squareup.okhttp3</groupId> <artifactId>okhttp</artifactId> <version>4.10.0</version> </dependency> <dependency> <groupId>com.google.code.gson</groupId> <artifactId>gson</artifactId> <version>2.8.9</version> </dependency> </dependencies>
Seamless AI uses API key authentication. Let's set that up:
private static final String API_KEY = "your_api_key_here"; private static final String BASE_URL = "https://api.seamless.ai/v1/";
Time to create our HTTP client and make some requests:
OkHttpClient client = new OkHttpClient(); public String makeRequest(String endpoint, String queryParams) { Request request = new Request.Builder() .url(BASE_URL + endpoint + "?" + queryParams) .addHeader("X-API-KEY", API_KEY) .build(); try (Response response = client.newCall(request).execute()) { return response.body().string(); } catch (IOException e) { e.printStackTrace(); return null; } }
Let's use Gson to parse those JSON responses:
Gson gson = new Gson(); public <T> T parseResponse(String json, Class<T> classOfT) { return gson.fromJson(json, classOfT); }
Now for the fun part! Let's implement person search, company search, and contact enrichment:
public List<Person> searchPeople(String name) { String response = makeRequest("people/search", "name=" + name); return parseResponse(response, new TypeToken<List<Person>>(){}.getType()); } public List<Company> searchCompanies(String name) { String response = makeRequest("companies/search", "name=" + name); return parseResponse(response, new TypeToken<List<Company>>(){}.getType()); } public Person enrichContact(String email) { String response = makeRequest("people/enrich", "email=" + email); return parseResponse(response, Person.class); }
To keep things smooth, let's add some rate limiting and caching:
private final RateLimiter rateLimiter = RateLimiter.create(5.0); // 5 requests per second private final LoadingCache<String, String> responseCache = CacheBuilder.newBuilder() .maximumSize(1000) .expireAfterWrite(15, TimeUnit.MINUTES) .build(new CacheLoader<String, String>() { @Override public String load(String key) throws Exception { rateLimiter.acquire(); return makeRequest(key); } });
Don't forget to handle those pesky errors and log important info:
private static final Logger logger = LoggerFactory.getLogger(SeamlessAIClient.class); try { // Your API call here } catch (Exception e) { logger.error("Error making API call: ", e); throw new SeamlessAIException("Failed to process request", e); }
Always test your code! Here's a quick unit test example:
@Test public void testPersonSearch() { List<Person> results = seamlessAIClient.searchPeople("John Doe"); assertNotNull(results); assertFalse(results.isEmpty()); assertEquals("John Doe", results.get(0).getName()); }
And there you have it! You've just built a robust Seamless AI API integration in Java. With this foundation, you can now expand on the functionality and create some truly impressive applications. Remember, the key to mastering any API is practice and experimentation, so don't be afraid to dive deeper and try out more advanced features.
Happy coding, and may your API calls always return 200 OK! 🚀