Hey there, fellow developer! Ready to supercharge your app with some AI-powered transcription and conversation analysis? Let's dive into integrating the Fireflies.ai API into your JavaScript project. This nifty tool can transcribe your audio, analyze conversations, and even let you search through all that juicy data. Exciting, right?
Before we jump in, make sure you've got:
Let's get this show on the road:
mkdir fireflies-integration cd fireflies-integration npm init -y npm install axios dotenv
First things first, let's keep that API key safe:
// .env FIREFLIES_API_KEY=your_api_key_here // index.js require('dotenv').config(); const axios = require('axios'); const api = axios.create({ baseURL: 'https://api.fireflies.ai/graphql', headers: { 'Authorization': process.env.FIREFLIES_API_KEY, 'Content-Type': 'application/json' } });
Now, let's talk to Fireflies:
async function makeRequest(query, variables = {}) { try { const response = await api.post('', { query, variables }); return response.data; } catch (error) { console.error('API request failed:', error); throw error; } }
Upload that audio and get it transcribed:
async function uploadAudio(fileUrl) { const query = ` mutation($input: UploadAudioInput!) { uploadAudio(input: $input) { id status } } `; const variables = { input: { url: fileUrl } }; return makeRequest(query, variables); } async function getTranscription(transcriptId) { const query = ` query($id: ID!) { transcript(id: $id) { text speakers { name words } } } `; const variables = { id: transcriptId }; return makeRequest(query, variables); }
Let's extract some insights:
async function analyzeConversation(transcriptId) { const query = ` query($id: ID!) { transcript(id: $id) { summary actionItems topics } } `; const variables = { id: transcriptId }; return makeRequest(query, variables); }
Find what you need in a snap:
async function searchTranscripts(keyword) { const query = ` query($keyword: String!) { search(query: $keyword) { transcripts { id title snippets } } } `; const variables = { keyword }; return makeRequest(query, variables); }
Always be prepared:
function handleApiError(error) { if (error.response) { console.error('API Error:', error.response.data); // Handle rate limiting if (error.response.status === 429) { // Implement exponential backoff } } else { console.error('Network Error:', error.message); } }
Don't forget to test! Here's a quick example using Jest:
test('uploadAudio should return a transcript ID', async () => { const result = await uploadAudio('https://example.com/audio.mp3'); expect(result.data.uploadAudio.id).toBeDefined(); });
Keep things speedy:
const NodeCache = require('node-cache'); const cache = new NodeCache({ stdTTL: 600 }); async function getCachedTranscription(transcriptId) { const cacheKey = `transcript_${transcriptId}`; let transcript = cache.get(cacheKey); if (!transcript) { transcript = await getTranscription(transcriptId); cache.set(cacheKey, transcript); } return transcript; }
And there you have it! You've just built a solid Fireflies.ai API integration. With this foundation, you can transcribe audio, analyze conversations, and search through your data like a pro. The possibilities are endless – maybe build a meeting summary bot or a conversation insights dashboard?
Now go forth and build something awesome! Remember, the sky's the limit when you've got AI on your side. Happy coding!