Hey there, fellow JavaScript devs! Ready to tackle the challenge of fetching real-time data from Microsoft Dynamics On-Premise without relying on webhooks? You're in the right place. Let's dive into the world of polling and see how we can make it work for us.
We all know the drill - you need real-time data, but you're dealing with an on-premise Dynamics setup that doesn't play nice with webhooks. No worries! Polling might not be the fanciest solution, but it's reliable and gets the job done. Let's roll up our sleeves and make it happen.
I'm assuming you've got your dev environment ready to go and you're familiar with authenticating against the Dynamics API. If not, take a quick detour to brush up on that. For this guide, we'll be using Node.js with the axios
library for our HTTP requests.
npm install axios
Let's start with a basic polling structure. The idea is simple: we'll make repeated requests to the Dynamics API at regular intervals. Here's a quick example to get us started:
const axios = require('axios'); async function pollDynamics() { try { const response = await axios.get('YOUR_DYNAMICS_API_ENDPOINT'); processData(response.data); } catch (error) { console.error('Polling error:', error); } } setInterval(pollDynamics, 5000); // Poll every 5 seconds
Now, constantly fetching all data is not very efficient. Let's use change tracking to only get what's new or updated:
let lastChangeToken = null; async function pollDynamicsWithChangeTracking() { try { const url = lastChangeToken ? `YOUR_API_ENDPOINT?$filter=modifiedon gt ${lastChangeToken}` : 'YOUR_API_ENDPOINT'; const response = await axios.get(url); lastChangeToken = response.data['@odata.deltaLink']; processData(response.data.value); } catch (error) { console.error('Polling error:', error); } }
Don't be that person who hammers the API! Let's implement some exponential backoff to be good API citizens:
let backoffTime = 1000; // Start with 1 second async function pollWithBackoff() { try { await pollDynamicsWithChangeTracking(); backoffTime = 1000; // Reset on success } catch (error) { console.error('Polling error:', error); backoffTime *= 2; // Double the backoff time backoffTime = Math.min(backoffTime, 60000); // Cap at 1 minute } setTimeout(pollWithBackoff, backoffTime); } pollWithBackoff();
Let's beef up our error handling to make our polling more resilient:
async function resilientPoll() { const maxRetries = 3; let retries = 0; while (retries < maxRetries) { try { await pollDynamicsWithChangeTracking(); break; // Success, exit the retry loop } catch (error) { retries++; console.error(`Polling attempt ${retries} failed:`, error); if (retries === maxRetries) { console.error('Max retries reached. Aborting.'); break; } await new Promise(resolve => setTimeout(resolve, 1000 * retries)); } } }
Once we've got our data, we need to do something useful with it:
function processData(data) { data.forEach(item => { // Process each item updateUI(item); storeLocally(item); }); } function updateUI(item) { // Update your UI with the new data console.log('Updating UI with:', item); } function storeLocally(item) { // Store in local database or state management system console.log('Storing item:', item); }
If you're dealing with multiple entities, you might want to poll them in parallel:
const entities = ['accounts', 'contacts', 'opportunities']; async function pollAllEntities() { const pollPromises = entities.map(entity => pollEntity(entity)); await Promise.all(pollPromises); } async function pollEntity(entity) { // Implement polling logic for a single entity console.log(`Polling ${entity}...`); } setInterval(pollAllEntities, 10000); // Poll all entities every 10 seconds
Don't forget to add some logging to help you troubleshoot:
const winston = require('winston'); const logger = winston.createLogger({ level: 'info', format: winston.format.simple(), transports: [new winston.transports.Console()] }); async function pollWithLogging() { logger.info('Starting poll'); try { await pollDynamicsWithChangeTracking(); logger.info('Poll completed successfully'); } catch (error) { logger.error('Polling error:', error); } }
And there you have it! You've now got a solid foundation for implementing real-time(ish) data fetching from Microsoft Dynamics On-Premise using polling. Remember, while polling is a great solution in many cases, keep an eye out for future opportunities to implement more efficient methods like webhooks if they become available.
Happy coding, and may your data always be fresh!