Back

Step by Step Guide to Building a Databricks API Integration in Go

Aug 7, 20245 minute read

Introduction

Hey there, fellow Go enthusiast! Ready to supercharge your data engineering workflow with Databricks? You're in the right place. We're going to walk through building a Databricks API integration using the nifty databricks-sdk-go package. Buckle up!

Prerequisites

Before we dive in, make sure you've got:

  • Go installed (I know you do, but just checking!)
  • A Databricks account with an access token
  • Your Go and Databricks basics down pat

Setting up the project

Let's kick things off:

mkdir databricks-go-integration cd databricks-go-integration go mod init databricks-go-integration go get github.com/databricks/databricks-sdk-go

Initializing the Databricks client

Time to get our hands dirty:

package main import ( "context" "fmt" "github.com/databricks/databricks-sdk-go" ) func main() { ctx := context.Background() client, err := databricks.NewWorkspaceClient() if err != nil { panic(err) } // We'll use this client for all our Databricks operations }

Authentication

Let's get you authenticated:

os.Setenv("DATABRICKS_HOST", "https://your-workspace.cloud.databricks.com") os.Setenv("DATABRICKS_TOKEN", "your-access-token")

Pro tip: In production, use a more secure method to handle your tokens!

Basic API operations

Now for the fun part. Let's list workspaces, create a cluster, and submit a job:

// List workspaces workspaces, err := client.Workspaces.List(ctx) if err != nil { panic(err) } fmt.Println("Workspaces:", workspaces) // Create a cluster cluster, err := client.Clusters.Create(ctx, Cluster{ ClusterName: "my-go-cluster", SparkVersion: "7.3.x-scala2.12", NodeTypeId: "i3.xlarge", NumWorkers: 2, }) if err != nil { panic(err) } fmt.Println("Cluster created:", cluster.ClusterId) // Submit a job job, err := client.Jobs.Create(ctx, JobSettings{ Name: "my-go-job", Tasks: []JobTaskSettings{{ TaskKey: "my-task", SparkPythonTask: &SparkPythonTask{ PythonFile: "dbfs:/path/to/your/script.py", }, ExistingClusterId: cluster.ClusterId, }}, }) if err != nil { panic(err) } fmt.Println("Job created:", job.JobId)

Error handling and best practices

Always check for errors (I know you know, but it's worth repeating). And hey, be nice to the API - implement rate limiting if you're making lots of calls.

Advanced usage

Want to level up? Try parallel API calls or custom retries:

// Parallel API calls var wg sync.WaitGroup wg.Add(2) go func() { defer wg.Done() // Make API call 1 }() go func() { defer wg.Done() // Make API call 2 }() wg.Wait() // Custom retries client, err := databricks.NewWorkspaceClient( databricks.WithRetryConfig(retry.Config{ MaxRetries: 5, RetryDelay: 1 * time.Second, }), )

Testing the integration

Don't forget to test! Here's a quick example:

func TestListWorkspaces(t *testing.T) { client := NewMockClient() workspaces, err := client.Workspaces.List(context.Background()) assert.NoError(t, err) assert.NotEmpty(t, workspaces) }

Conclusion

And there you have it! You've just built a Databricks API integration in Go. Pretty cool, right? Remember, this is just scratching the surface. The databricks-sdk-go package has a ton more features to explore.

Keep coding, keep learning, and most importantly, have fun with it! If you need more info, check out the Databricks SDK documentation. Happy coding!