Back

Step by Step Guide to Building a Lofty API Integration in Python

Aug 13, 20246 minute read

Introduction

Hey there, fellow code wranglers! Ready to dive into the world of real estate tech? Today, we're going to build a slick integration with the Lofty API using Python. Lofty's API is your ticket to accessing a treasure trove of property data and investment info. Let's get our hands dirty and create something awesome!

Prerequisites

Before we jump in, make sure you've got:

  • Python 3.7+
  • requests library
  • Your Lofty API credentials (if you don't have 'em, go grab 'em!)

Setting up the environment

First things first, let's get our ducks in a row:

pip install requests

Now, let's keep those API keys safe:

import os os.environ['LOFTY_API_KEY'] = 'your_api_key_here'

Basic API Connection

Time to make our first connection:

import requests BASE_URL = 'https://api.lofty.com/v1' headers = { 'Authorization': f"Bearer {os.environ['LOFTY_API_KEY']}", 'Content-Type': 'application/json' } def make_request(endpoint, method='GET', data=None): url = f"{BASE_URL}/{endpoint}" response = requests.request(method, url, headers=headers, json=data) response.raise_for_status() return response.json()

Core API Functionalities

Let's flex those API muscles:

# Fetch property data def get_property(property_id): return make_request(f'properties/{property_id}') # Retrieve investment info def get_investments(user_id): return make_request(f'users/{user_id}/investments') # Execute a transaction def make_investment(user_id, property_id, amount): data = {'property_id': property_id, 'amount': amount} return make_request(f'users/{user_id}/investments', method='POST', data=data)

Error Handling and Rate Limiting

Let's play nice with the API:

import time from requests.exceptions import RequestException def make_request_with_retry(endpoint, method='GET', data=None, max_retries=3): for attempt in range(max_retries): try: return make_request(endpoint, method, data) except RequestException as e: if attempt == max_retries - 1: raise time.sleep(2 ** attempt) # Exponential backoff

Data Processing and Storage

Keep that data tidy:

import json def process_and_store(data, filename): # Do some processing here processed_data = {k: v.upper() if isinstance(v, str) else v for k, v in data.items()} with open(filename, 'w') as f: json.dump(processed_data, f)

Advanced Features

Let's kick it up a notch:

from flask import Flask, request app = Flask(__name__) @app.route('/webhook', methods=['POST']) def handle_webhook(): data = request.json # Process webhook data return '', 200 # Run this with `flask run` to start listening for webhooks

Testing and Validation

Trust, but verify:

import unittest from unittest.mock import patch class TestLoftyAPI(unittest.TestCase): @patch('requests.request') def test_get_property(self, mock_request): mock_request.return_value.json.return_value = {'id': '123', 'address': '123 Main St'} result = get_property('123') self.assertEqual(result['address'], '123 Main St') if __name__ == '__main__': unittest.main()

Optimization and Best Practices

Let's make it purr:

import asyncio import aiohttp async def fetch_property(session, property_id): url = f"{BASE_URL}/properties/{property_id}" async with session.get(url, headers=headers) as response: return await response.json() async def fetch_multiple_properties(property_ids): async with aiohttp.ClientSession() as session: tasks = [fetch_property(session, pid) for pid in property_ids] return await asyncio.gather(*tasks) # Usage # properties = asyncio.run(fetch_multiple_properties(['123', '456', '789']))

Conclusion

And there you have it, folks! We've built a robust Lofty API integration that can fetch data, handle transactions, and even listen for real-time updates. Remember, this is just the beginning. There's always room to expand and improve your integration.

Resources

Now go forth and build something amazing! The real estate tech world is your oyster. Happy coding!