Hey there, fellow JavaScript devs! Ready to dive into the world of real-time data with Azure OpenAI Service? Let's skip the fluff and get straight to the good stuff – polling for data like pros.
Azure OpenAI Service is a powerhouse, but sometimes webhooks just aren't in the cards. No worries! We're going to tackle this with good old-fashioned polling. It's like checking your crush's social media every five minutes, but way more productive.
First things first, let's get you set up:
Easy peasy, right? Now let's get to the fun part.
Here's the basic structure we're working with:
function poll(fn, interval, maxAttempts) { let attempts = 0; const executePoll = async () => { const result = await fn(); attempts++; if (result) { // We're done! return result; } else if (maxAttempts && attempts === maxAttempts) { // We've hit our limit throw new Error('Max attempts reached'); } else { // Try again setTimeout(executePoll, interval); } }; return executePoll(); }
Now, let's make this Azure-friendly with some adaptive polling:
function adaptivePolling(fn, initialInterval = 1000, maxInterval = 30000) { let interval = initialInterval; const executePoll = async () => { try { const result = await fn(); if (result) return result; // Increase interval, but cap it interval = Math.min(interval * 2, maxInterval); setTimeout(executePoll, interval); } catch (error) { if (error.status === 429) { // Rate limited, back off interval = Math.min(interval * 2, maxInterval); setTimeout(executePoll, interval); } else { throw error; } } }; return executePoll(); }
Let's put our polling to work:
const fetchCompletionStatus = async (operationId) => { const response = await fetch(`${AZURE_ENDPOINT}/operations/${operationId}`, { headers: { 'api-key': AZURE_API_KEY } }); const data = await response.json(); return data.status === 'succeeded' ? data : null; }; adaptivePolling(() => fetchCompletionStatus('your-operation-id')) .then(result => console.log('Operation complete:', result)) .catch(error => console.error('Polling failed:', error));
Keep your users in the loop:
function updateUI(data) { const statusElement = document.getElementById('status'); statusElement.textContent = `Status: ${data.status}`; if (data.result) { const resultElement = document.getElementById('result'); resultElement.textContent = data.result.text; } } adaptivePolling(() => fetchCompletionStatus('your-operation-id')) .then(result => { updateUI(result); console.log('Operation complete:', result); }) .catch(error => { updateUI({ status: 'error' }); console.error('Polling failed:', error); });
Let's beef up our error handling:
function robustPolling(fn, maxAttempts = 5) { let attempts = 0; const executePoll = async () => { try { attempts++; const result = await fn(); if (result) return result; if (attempts >= maxAttempts) throw new Error('Max attempts reached'); await new Promise(resolve => setTimeout(resolve, 2000 * attempts)); return executePoll(); } catch (error) { if (error.status === 429 && attempts < maxAttempts) { await new Promise(resolve => setTimeout(resolve, 5000)); return executePoll(); } throw error; } }; return executePoll(); }
Don't be a bandwidth hog. Let's add some caching:
const cache = new Map(); async function cachedFetch(url, options) { const cacheKey = `${url}${JSON.stringify(options)}`; if (cache.has(cacheKey)) { return cache.get(cacheKey); } const response = await fetch(url, options); const data = await response.json(); cache.set(cacheKey, data); return data; }
While we're all about polling today, keep Server-Sent Events and WebSockets in your back pocket for when you need that extra real-time oomph.
And there you have it! You're now armed and ready to tackle real-time data in Azure OpenAI Service without breaking a sweat. Remember, polling might not be the new kid on the block, but it's reliable, easy to implement, and gets the job done.
Now go forth and poll like a champ! 🚀